Learning to control arm stiffness under static conditions.
نویسندگان
چکیده
We used a robotic device to test the idea that impedance control involves a process of learning or adaptation that is acquired over time and permits the voluntary control of the pattern of stiffness at the hand. The tests were conducted in statics. Subjects were trained over the course of 3 successive days to resist the effects of one of three different kinds of mechanical loads: single axis loads acting in the lateral direction, single axis loads acting in the forward/backward direction, and isotropic loads that perturbed the limb in eight directions about a circle. We found that subjects in contact with single axis loads voluntarily modified their hand stiffness orientation such that changes to the direction of maximum stiffness mirrored the direction of applied load. In the case of isotropic loads, a uniform increase in endpoint stiffness was observed. Using a physiologically realistic model of two-joint arm movement, the experimentally determined pattern of impedance change could be replicated by assuming that coactivation of elbow and double joint muscles was independent of coactivation of muscles at the shoulder. Moreover, using this pattern of coactivation control we were able to replicate an asymmetric pattern of rotation of the stiffness ellipse that was observed empirically. These findings are consistent with the idea that arm stiffness is controlled through the use of at least two independent co-contraction commands.
منابع مشابه
Effect of segmental joint stiffness on tunnel lining internal forces under static conditions
According to the wide application of segmental lining in mechanized tunneling, recognizing the behavior of segmental lining joints is important in tunnels designing. In the structural analysis of the tunnel segmental lining, segmental joints can be considered as elastic joints, and their stiffness characteristics are affected by the rotational, shear, and axial stiffness. The purpose of this wo...
متن کاملControl of hand impedance under static conditions and during reaching movement.
It is known that humans can modify the impedance of the musculoskeletal periphery, but the extent of this modification is uncertain. Previous studies on impedance control under static conditions indicate a limited ability to modify impedance, whereas studies of impedance control during reaching in unstable environments suggest a greater range of impedance modification. As a first step in accoun...
متن کاملA robotic manipulator for the characterization of two-dimensional dynamic stiffness using stochastic displacement perturbations.
Experimental techniques for estimating the two-dimensional dynamic stiffness of the human arm over a wide range of conditions have been developed. A robotic manipulator has been developed to create loads against which subjects perform various tasks and also to impose perturbations onto the endpoint of the arm to allow estimation of its mechanical properties. The manipulator can produce static e...
متن کاملMultijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
Stiffness properties of the musculo-skeletal system can be controlled by regulating muscle activation and neural feedback gain. To understand the regulation of multijoint stiffness, we examined the relationship between human arm joint stiffness and muscle activation during static force control in the horizontal plane by means of surface electromyographic (EMG) studies. Subjects were asked to pr...
متن کاملCerebellar ataxia impairs modulation of arm stiffness during postural maintenance.
Impedance control enables humans to effectively interact with their environment during postural and movement tasks, adjusting the mechanical behavior of their limbs to account for instability. Previous work has shown that people are able to selectively modulate the end-point stiffness of their arms, adjusting for varying directions of environmental disturbances. Behavioral studies also suggest ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2004